Explorando bases de dados para treinamento de modelos em aprendizagem de máquina na indústria da moda
DOI:
https://doi.org/10.29147/datjournal.v9i2.877Palavras-chave:
Aprendizagem de Máquina na Moda, Inteligência Artificial, Inovação tecnológica, Base de dados, Aprendizagem supervisionadaResumo
O interesse crescente na aplicação da aprendizagem de máquina (AM) na moda destaca a importância do uso de dados rotulados para desenvolver modelos, facilitando a replicação de pesquisas e automatizando a análise de novos dados, como imagens de desfiles de moda disponíveis online. Apesar dessa necessidade, poucos estudos, especialmente no Brasil, exploram metodologicamente a interseção entre moda e AM. Esta pesquisa visa oferecer uma visão geral das bases de dados online para treinamento de modelos de AM. Uma revisão sistemática identificou 26 artigos que utilizam essas bases de dados, como Fashion-MNIST e DeepFashion2. A análise de conteúdo revelou que essas bases, incluindo Polyvore e Fashion Image Dataset, têm aplicações diversas, destacando o potencial transformador da AM na moda e incentivando inovações em design, produção e marketing na indústria da moda.
Downloads
Referências
AGGARWAL, P. Fashion product images dataset. 2024. Disponível em: https://www.kaggle.com/datasets/paramaggarwal/fashion-product-images-dataset. Acesso em: 18 jan. 2024.
ALLOGHANI, M. et al. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In: BERRY, M.; MOHAMED, A.; YAP, B. (Eds.) Supervised and Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised Learning. Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-22475-2_1
ALZU’BI, A. et al. An interactive attribute-preserving fashion recommendation with 3D image-based virtual try-on. International Journal of Multimedia Information Retrieval, v. 12, n. 2, p. 24, 2023. DOI: https://doi.org/10.1007/s13735-023-00294-5
ARKSEY, H.; O’MALLEY, L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, v. 8, n. 1, p. 19–32, 2005. DOI: https://doi.org/10.1080/1364557032000119616
BERTOLINI, M.; MEZZOGORI, D.; NERONI, M.; ZAMMORI, F. Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, v. 175, p. 114820, 2021. DOI: https://doi.org/10.1016/j.eswa.2021.114820
BHOIR, S.; PATIL, S. The FASHION Visual Search using Deep Learning Approach. Library Philosophy and Practice, n. 7569, n. p., 2023. DOI: https://doi.org/10.21203/rs.3.rs-2053297/v1
CASTRO, E. et al. Fill in the blank for fashion complementary outfit product retrieval: Visum summer school competition. Machine Vision and Applications, v. 34, n. 1, p. 16, 2023. DOI: https://doi.org/10.1007/s00138-022-01359-x
CENDON, B. V.; RIBEIRO, N. A. Análise da literatura acadêmica sobre o portal periódico capes. Informação & Sociedade, v. 18, n. 2, 2008.
CHAKRABORTY, S. et al. Fashion recommendation systems, models, and methods: A review. Informatics, v. 8, p. 49, 2021. DOI: https://doi.org/10.3390/informatics8030049
CHANG, A. A. et al. Fashion trend forecasting using machine learning techniques: a review. In: Data Science and Intelligent Systems: Proceedings of 5th Computational Methods in Systems and Software 2021, Vol. 2, p. 34–44, 2021. DOI: https://doi.org/10.1007/978-3-030-90321-3_5
CHANG, Y.-H.; ZHANG, Y.-Y. Deep learning for clothing style recognition using yolov5. Micromachines, v. 13, n. 10, p. 1678, 2022. DOI: https://doi.org/10.3390/mi13101678
CUI, X. An adaptive recommendation algorithm of intelligent clothing design element based on large database. Mobile Information Systems, v. 2022, p. 3334047, 2022. DOI: https://doi.org/10.1155/2022/3334047
FONTANINI, T.; FERRARI, C. Would Your Clothes Look Good on Me? Towards Transferring Clothing Styles with Adaptive Instance Normalization. Sensors, v. 22, n. 13, p. 5002, 2022. DOI: https://doi.org/10.3390/s22135002
GE, Y.; ZHANG, R.; WU, L.; WANG, X.; TANG, X.; LUO, P. A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images. In: CVPR, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00548
GETMAN, R. R. et al. Machine learning (ML) for tracking fashion trends: Documenting the frequency of the baseball cap on social media and the runway. Clothing and Textiles Research Journal, v. 39, n. 4, p. 281–296, 2021. DOI: https://doi.org/10.1177/0887302X20931195
GIRI, C. et al. A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access, v. 7, p. 95376–95396, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2928979
GU, X. et al. Fashion analysis and understanding with artificial intelligence. Information Processing & Management, v. 57, n. 5, p. 102276, 2020. DOI: https://doi.org/10.1016/j.ipm.2020.102276
GUAN, C.; QIN, S.; LONG, Y. Apparel-based deep learning system design for apparel style recommendation. International Journal of Clothing Science and Technology, v. 31, n. 3, p. 376-389, 2019. DOI: https://doi.org/10.1108/IJCST-02-2018-0019
GUO, S.; HUANG, W.; ZHANG, X.; SRIKHANTA, P.; CUI, Y.; LI, Y.; BELONGIE, S. The Imaterialist Fashion Attribute Dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019. DOI: https://doi.org/10.1109/ICCVW.2019.00377
HAENLEIN, M.; KAPLAN, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, v. 61, n. 4, p.5–14, 2019. DOI: https://doi.org/10.1177/0008125619864925
HAN, A.; KIM, J.; AHN, J. Color trend analysis using machine learning with fashion collection images. Clothing and Textiles Research Journal, v. 40, n. 4, p. 308–324, 2022. DOI: https://doi.org/10.1177/0887302X21995948
HAN, X.; WU, Z.; JIANG, Y.-G.; DAVIS, L. S. Learning Fashion Compatibility with Bidirectional LSTMs. In: ACM Multimedia, 2017. DOI: https://doi.org/10.1145/3123266.3123394
HUYEN, C. Designing Machine Learning Systems. O’Reilly Media, Inc., 2022.
KIM, S. et al. Automatic Measurements of Garment Sizes Using Computer Vision Deep Learning Models and Point Cloud Data. Applied Sciences, v. 12, n. 10, p. 5286, 2022. DOI: https://doi.org/10.3390/app12105286
LEE, Y. A. Trends of Emerging Technologies in the Fashion Product Design and Development Process. In: LEE, Y. A. (Ed.). Leading Edge Technologies in Fashion Innovation. Palgrave Studies in Practice: Global Fashion Brand Management. Cham: Palgrave Mac-millan, 2022. p. 1-15. DOI: https://doi.org/10.1007/978-3-030-91135-5_1
LIPOVETSKY, G. O império do efêmero: a moda e seu destino nas sociedades modernas. São Paulo: Editora Companhia das Letras, 2009.
LIU, J.; SONG, X.; CHEN, Z.; MA, J. Neural fashion experts: I know how to make the complementary clothing matching. Neurocomputing, v. 359, p. 249-263, 2019. DOI: https://doi.org/10.1016/j.neucom.2019.05.081
LU, Y. Artificial intelligence: a survey on evolution, models, applications, and future trends. Journal of Management Analytics, v. 6, n. 1, p. 1-29, 2019. DOI: https://doi.org/10.1080/23270012.2019.1570365
LUCE, L. Artificial intelligence for fashion: How AI is revolutionizing the fashion industry. Apress, 2018. DOI: https://doi.org/10.1007/978-1-4842-3931-5
MAHESH, B. Machine Learning Algorithms - A Review. International Journal of Science and Research, v. 9, n. 1, p. 381-386, 2020. DOI: https://doi.org/10.21275/ART20203995
MARTÍN-MARTÍN, A. et al. Google scholar, microsoft academic, scopus, dimensions, web of science, and opencitations coci: a multidisciplinary comparison of coverage via citations. Scientometrics, v. 126, n. 1, p. 871-906, 2021. DOI: https://doi.org/10.1007/s11192-020-03690-4
MATZEN, K.; BALA, K.; SNAVELY, N. Streetstyle: Exploring world-wide clothing styles from millions of photos. arXiv preprint arXiv:1706.01869, 2017.
MIRANDA, A. P. Consumo de moda: a relação pessoa-objeto. São Paulo: Editora estação das letras e cores, 2019.
MUTHUKRISHNAN, N. et al. Brief history of artificial intelligence. Neuroimaging Clinics, v. 30, n. 4, p. 393-399, 2020. DOI: https://doi.org/10.1016/j.nic.2020.07.004
PACKER, A. L. The scielo open access: a gold way from the south. Canadian Journal of Higher Education, v. 39, n. 3, p. 111-126, 2009. DOI: https://doi.org/10.47678/cjhe.v39i3.479
PARÉ, G. et al. Synthesizing information systems knowledge: A typology of literature reviews. Information & Management, v. 52, n. 2, p. 183-199, 2015. DOI: https://doi.org/10.1016/j.im.2014.08.008
PENG, D. et al. Unsupervised multi-modal modeling of fashion styles with visual attributes. Applied Soft Computing, v. 115, 108214, 2022. DOI: https://doi.org/10.1016/j.asoc.2021.108214
RATHORE, B. Beyond trends: Shaping the future of fashion marketing with ai, sustainability and machine learning. Eduzone, v. 6, n. 2, p. 16-24, 2017. DOI: https://doi.org/10.56614/eiprmj.v6i2y17.340
ROCHA, D.; SOARES, F.; OLIVEIRA, E.; CARVALHO, V. Blind people: Clothing category classification and stain detection using transfer learning. Applied Sciences, v. 13, n. 3, p. 1925, 2023. DOI: https://doi.org/10.3390/app13031925
SHIN, S.-Y.; JO, G.; WANG, G. A novel method for fashion clothing image classification based on deep learning. Journal of Information and Communication Technology, v. 22, n. 1, p. 127–148, 2023. DOI: https://doi.org/10.32890/jict2023.22.1.6
SHINDE, P. P.; SHAH, S. A review of machine learning and deep learning applications. In:
Fourth international conference on computing communication control and automation (ICCUBEA), p. 1–6. IEEE, 2018. DOI: https://doi.org/10.1109/ICCUBEA.2018.8697477
SIPPER, M. Combining Deep Learning with Good Old-Fashioned Machine Learning. SN COMPUT. SCI., v. 4, p. 85, 2023. DOI: https://doi.org/10.1007/s42979-022-01505-2
STUART, R.; NORVIG, P. Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.
SULTHANA, R. et al. A review on the literature of fashion recommender system using deep learning. International Journal of Performability Engineering, v. 17, n. 8, p. 695, 2021. DOI: https://doi.org/10.23940/ijpe.21.08.p5.695702
SUN, L.; ZHAO, L. Technology disruptions: exploring the changing roles of designers, makers, and users in the fashion industry. International Journal of Fashion Design, Technology and Education, v. 11, n. 3, p. 362-374, 2018. DOI: https://doi.org/10.1080/17543266.2018.1448462
TAHERDOOST, H.; MADANCHIAN, M. Artificial intelligence and knowledge management: Impacts, benefits, and implementation. Computers, v. 12, n. 4, p. 72, 2023. DOI: https://doi.org/10.3390/computers12040072
TAUTKUTE, I. et al. Deepstyle: Multimodal search engine for fashion and interior design. IEEE Access, v. 7, p. 84613–84628, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2923552
VIJAYARAJ, A. et al. Deep learning image classification for fashion design. Wireless Communications and Mobile Computing, 2022. DOI: https://doi.org/10.1155/2022/7549397
XIAO, H.; RASUL, K.; VOLLGRAF, R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. 2017. Disponível em: https://arxiv.org/abs/cs.LG/1708.07747. Acesso em: 18 jan. 2024.
YANG, B. Clothing design style recommendation using decision tree algorithm combined with deep learning. Computational Intelligence and Neuroscience, 2022. DOI: https://doi.org/10.1155/2022/5745457
YIAN, S.; KYUNG-SHIK, S. Hierarchical convolutional neural networks for fashion image classification. Expert Systems with Applications, v. 116, p. 328-339, 2019. DOI: https://doi.org/10.1016/j.eswa.2018.09.022
whaZHANG, S. et al. Watch fashion shows to tell clothing attributes. Neurocomputing, v. 282, p. 98–110, 2018. DOI: https://doi.org/10.1016/j.neucom.2017.12.027
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 DAT Journal
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.