Una revisión del Complexo de Funciones de Robots Y HRI
DOI:
https://doi.org/10.29147/datjournal.v7i3.654Palabras clave:
Robot, Diseño, Revisión Sistemática, Complejo de FuncionesResumen
A medida que avanza la tecnología, los robots están cada vez más presentes en nuestra vida y cultura cotidianas. El campo de la robótica está abierto a contribuciones de muchos campos, pero la definición de lo que es un “robot” puede enriquecerse si se analiza como un artefacto de diseño. El objetivo de esta investigación es promover una definición más amigable con el diseño robotico de lo que quieren decir los investigadores en el campo de la robótica cuando dicen que están estudiando o desarrollando dichos robots. Se realizó una Revisión Sistemática de la Literatura para identificar y analizar los artículos más citados sobre el tema. Para comprender la perspectiva del diseño, estos documentos se analizaron a la luz del Complejo de funciones, propuesto por el diseñador Victor Papanek. La revisión seleccionó los 37 artículos más citados, de más de 25 mil resultados de búsqueda de 5 portales científicos. El estudio logró una visión genérica del robot bajo la luz del Complejo de Funciones.
Descargas
Citas
BARTNECK, C. et al. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. In: I. J. Social Robo¬tics, v. 1, n. 1, p. 71 – 81, 2009. DOI: https://doi.org/10.1007/s12369-008-0001-3
BRACCA, A. et al. Detecção Molecular de Histoplasma capsulatum var. capsulatum em amostras clínicas humanas. 2002. In: Journal of Clincal Microbiology.
BREAZEAL, C. Emotion and sociable humanoid robots. International Journal of Human Computer Studies, v. 59, n. 1-2, p. 119 – 155, 2003a.
BREAZEAL, C. Emotion and sociable humanoid robots. v. 59, n. 1-2, p. 119 – 155, 2003b. DOI: https://doi.org/10.1016/S1071-5819(03)00018-1
BREAZEAL, C. Toward sociable robots. Robotics and Autonomous Systems, Elsevier Scien¬ce B.V., Cambridge, n. 42, p. 167 – 175, 2003c. DOI: https://doi.org/10.1016/S0921-8890(02)00373-1
BREAZEAL, C. et al. Effects of nonverbal communication on efficiency and robustness in hu¬man-robot teamwork. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.: s.n.], 2005. p. 708 – 713. DOI: https://doi.org/10.1109/IROS.2005.1545011
BURGARD, W. et al. Experiences with an Interactive Museum Tour-Guide Robot. Artif. In¬tell., v. 114, n. 1-2, p. 3 – 55, 1999. DOI: https://doi.org/10.1016/S0004-3702(99)00070-3
CALINON, S.; GUENTER, F.; BILLARD, A. On Learning, Representing, and Generalizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 37, n. 2, p. 286 – 298, 2007. DOI: https://doi.org/10.1109/TSMCB.2006.886952
CASPER, J.; MURPHY, R. R. Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 33, n. 3, p. 367 – 385, 2003. DOI: https://doi.org/10.1109/TSMCB.2003.811794
CHITA-TEGMARK, M.; SCHEUTZ, M. Assistive Robots for the Social Management of Health: A Framework for Robot Design and Human-Robot Interaction Research. International Jour¬nal of Social Robotics, Springer Nature B.V., February 2020. DOI: https://doi.org/10.1007/s12369-020-00634-z
CROSS, E. S.; HORTENSIUS, R.; WYKOWSKA, A. From social brains to social robots: applying neurocognitive insights to human–robot interaction. Phil. Trans. R. Soc. B, The Royal So¬ciety Publishing, 2019. DOI: https://doi.org/10.1098/rstb.2018.0024
DAUTENHAHN, K. Socially intelligent robots: dimensions of human–robot interaction. Phi¬losophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, v. 362, n. 1480, p. 679 – 704, 4 2007. DOI: https://doi.org/10.1098/rstb.2006.2004
DAUTENHAHN, K. et al. How may i serve you? A robot companion approaching a seated per¬son in a helping context. HRI’06, ACM, Salt Lake City, March 2006. DOI: https://doi.org/10.1145/1121241.1121272
D’ELIA, N. et al. Physical human-robot interaction of an active pelvis orthosis: toward ergo¬nomic assessment of wearable robots. Journal of NeuroEngineering and Rehabilitation, BioMed Central, 2017. DOI: https://doi.org/10.1186/s12984-017-0237-y
DISALVO, C. F. et al. All robots are not created equal: The design and perception of humanoid robot heads. DIS2002, ACM, London, 2002. DOI: https://doi.org/10.1145/778712.778756
FAVRO, T. Generation Robot: A Century of Science Fiction, Fact and Speculation. Delawa¬re: Skyhorse Publishing, 2018.
FEIX, T. et al. The GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human¬-Machine Systems, v. 46, n. 1, p. 66 – 77, 2016. DOI: https://doi.org/10.1109/THMS.2015.2470657
T. et al. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot. Frontiers in Robotics and AI, March 2018.
FONG, T.; NOURBAKHSH, I.; DAUTENHAHN, K. A survey of socially interactive robots. v. 42, n. 3-4, p. 143 – 166, 2003. DOI: https://doi.org/10.1016/S0921-8890(02)00372-X
FORLIZZI, J.; DISALVO, C. Service robots in the domestic environment. In: Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction - HRI ’06. [s.n.], 2006. DOI: https://doi.org/10.1145/1121241.1121286
GOCKLEY, R.; FORLIZZI, J.; SIMMONS, R. Natural person-following behavior for social robots. In: 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI). [S.l.: s.n.], 2007. p. 17 – 24. DOI: https://doi.org/10.1145/1228716.1228720
GOODRICH, M. A.; SCHULTZ, A. C. Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, v. 1, n. 3, p. 203 – 275, 2007. DOI: https://doi.org/10.1561/1100000005
GREEFF, J. de; BELPAEME, T. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction. PLoS ONE, Public Library of Science, v. 10, n. 9, p. e0138061 –, 2015. DOI: https://doi.org/10.1371/journal.pone.0138061
HANCOCK, P. A. et al. A Meta-Analysis of Factors Affecting Trust in Human- Robot Interac¬tion. Human Factors, v. 53, n. 5, p. 517 – 527, 2011. DOI: https://doi.org/10.1177/0018720811417254
INTELLIGENCE, M. ROBOTICS MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FO¬RECASTS (2021 - 2026). 2021. Available at: https://www:mordorintelligence:com/indus¬try-reports/robotics-market. Accessado em: 17/02/2021.
KONG, K.; BAE, J.; TOMIZUKA, M. Control of Rotary Series Elastic Actuator for Ideal Force¬-Mode Actuation in Human–Robot Interaction Applications. IEEE/ASME Transactions on Mechatronics, v. 14, n. 1, p. 105 – 118, 2009. DOI: https://doi.org/10.1109/TMECH.2008.2004561
MATARIc´, M. J. The Robotics Primer. Cambridge: The MIT Press, 2007.
MUMM, J.; MUTLU, B. Human-robot proxemics: Physical and psychological distancing in human-robot interaction. HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction, n. May 2014, p. 331 – 338, 2011. DOI: https://doi.org/10.1145/1957656.1957786
MURPHY, R. R. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), v. 34, n. 2, p. 138 – 153, 2004. ISSN 1558-2442 VO - 34. DOI: https://doi.org/10.1109/TSMCC.2004.826267
NICOLESCU, M. N.; MATARIC´, M. J. Natural Methods for Robot Task Learning: Instructive Demonstrations, Generalization and Practice. AAMAS’03, ACM, Melbourne, JULY 2003. DOI: https://doi.org/10.1145/860575.860614
PAPANEK, V. Design for the Real World: Human Ecology and Social Change. Chicago: Chi¬cago Review Press, 1971.
PINEAU, J. et al. Towards robotic assistants in nursing homes: Challenges and results. Robo¬tics and Autonomous Systems, v. 42, n. 3-4, p. 271 – 281, 2003. DOI: https://doi.org/10.1016/S0921-8890(02)00381-0
POWERS, A. et al. Comparing a Computer Agent with a Humanoid Robot. HRI’07, ACM, Ar¬lington, March 2007. DOI: https://doi.org/10.1145/1228716.1228736
SAERBECK, M. et al. Expressive Robots in Education: Varying the Degree of Social Supportive Behavior of a Robotic Tutor. CHI 2010: Classroom Technologies, ACM, Atlanta, p. 1613 – 1622, April 2010. DOI: https://doi.org/10.1145/1753326.1753567
SAMANI, H. et al. Cultural Robotics: The Culture of Robotics and Robotics in Culture. In¬ternational Journal of Advanced Robotic Systems (Page 1). IntechOpen, v. 10, n. 400, p. 1 – 10, Feb 25/02/2013. DOI: https://doi.org/10.5772/57260
SANTIS, A. D. et al. An atlas of physical human-robot interaction. Mechanism and Machine Theory, v. 43, n. 3, p. 253 – 270, 2008. DOI: https://doi.org/10.1016/j.mechmachtheory.2007.03.003
SCHIAVI, R. et al. VSA-II: a Novel Prototype of Variable Stiffness Actuator for Safe and Per¬forming Robots Interacting with Humans. In: 2008 IEEE International Conference on Ro¬botics and Automation. [S.l.: s.n.], 2008. p. 2171 – 2176. DOI: https://doi.org/10.1109/ROBOT.2008.4543528
SIDNER, C. L. et al. Where to look: A study of human-robot engagement. IUI’04, ACM, Madei¬ra, p. 13 – 16, January 2004. DOI: https://doi.org/10.1145/964442.964458
SISBOT, E. A. et al. A Human Aware Mobile Robot Motion Planner. IEEE Transactions on Robotics, v. 23, n. 5, p. 874 – 883, 2007. DOI: https://doi.org/10.1109/TRO.2007.904911
STEINFELD, A. et al. Common metrics for human-robot interaction. HRI’06, ACM, Salt Lake City, p. 2 – 4, 2006. DOI: https://doi.org/10.1145/1121241.1121249
THRUN, S. et al. MINERVA: a second-generation museum tour-guide robot. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). [S.l.: s.n.], 1999. v. 3, p. 1999–2005 – vol.3.
TONIETTI, G.; SCHIAVI, R.; BICCHI, A. Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In: Proceedings of the 2005 IEEE Inter¬national Conference on Robotics and Automation. [S.l.: s.n.], 2005. p. 526 – 531.
VAROL, H. A.; SUP, F.; GOLDFARB*, M. Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis. IEEE Transactions on Biomedical Engineering, v. 57, n. 3, p. 542 – 551, 2010. DOI: https://doi.org/10.1109/TBME.2009.2034734
WADA, K.; SHIBATA, T. Living with seal robots - Its sociopsychological and physiological in¬fluences on the elderly at a care house. In: IEEE Transactions on Robotics. [S.l.: s.n.], 2007. v. 23, n. 5, p. 972 – 980. DOI: https://doi.org/10.1109/TRO.2007.906261
ZELANSKI, P.; FISHER, M. P. Shaping Space. 2. ed. [S.l.]: Cengage Learning, 1994. ISBN 0030765463.