Sistema de Monitoreo de Muelle con Características de Industria 4.0
Caso de Estudio con una Interfaz de Realidad Aumentada e IoT en una Fábrica de Televisiones
DOI:
https://doi.org/10.29147/datjournal.v7i3.653Palabras clave:
Diseño de interfaz, Realidad aumentada, Industria 4.0Resumen
El constante avance tecnológico colabora para que los diferentes sectores de la industria puedan cambiar y actualizarse ante las nuevas exigencias del mercado. La Industria 4.0 ha traído consigo nuevos paradigmas que definen cómo debe comportarse la industria en este nuevo escenario. La tecnología de Realidad Aumentada (AR), como uno de los pilares del concepto 4.0, posibilita nuevas formas de establecer las tecnologías de la información y potenciar esta actualización. A pesar del gran potencial, faltan estudios específicos sobre la construcción de interfaces AR simples y efectivas. Por lo tanto, el objetivo de este artículo es presentar un prototipo de interfaz AR para simplificar la gestión de los muelles JIT (Just inTime) en una fábrica que produces televisoras. Para la ejecución de este trabajo se aplicó el método Double Diamond para comprender el estado actual de los estudios sobre UX y UI con AR y promover la innovación en la construcción de la interfaz AR dirigida al uso en la industria. Los resultados demuestran la aceptación del producto y la implementación simplificada en el proceso de gestión.
Descargas
Citas
ARROYO-VAZQUEZ, N. Experiencies de realitat augmentada en biblioteques: estat de la Ques¬tion. BID: TEXTOS UNIVERSITARIS DE BIBLIOTECONOMIA DOCUMENTACION, 2016, p. 36, 2020.
AULENTA, F., & LENS, P. Recent advances in Augmented Reality. NEW BIOTECHNOLOGY, v. 29(1), p. 1, 2011. DOI: https://doi.org/10.1016/S1871-6784(11)00246-9
Azuma, R. T. A Survey of Augmented Reality. PRESENCE, v. 6(3), p. 355–385, 1997. DOI: https://doi.org/10.1162/pres.1997.6.4.355
Azuma, R. Tracking Requirements for Augmented Reality. COMMUNICATIONS OF THE ACM, v. 36(7), p. 50–51, 1993. DOI: https://doi.org/10.1145/159544.159581
DESIGN COUNCIL. A study of the design process. v. 44(0), 2007.
GABBARD, J. L., SWAN, J. E., HIX, D., LANZAGORTA, M., LIVINGSTON, M., BROWN, D., & JU¬LIER, S. Usability Engineering: Domain Analysis Activities for Augmented Reality Sys¬tems. v. 4660(202), p. 445–457, 2002. DOI: https://doi.org/10.1117/12.468073
GUSTAFSSON, D. Analyzing the Double diamond design process through research & implementation, 2019.
JETTER, JEROME, EIMECKE, J., & RESE, A. Augmented reality tools for industrial applica¬tions: What are potential key performance indicators and who benefits?, COMPUTERS IN HUMAN BEHAVIOR, v. 87, p. 18–33, 2018. DOI: https://doi.org/10.1016/j.chb.2018.04.054
LOPIK, K. VAN, SINCLAIR, M., SHARPE, R., CONWAY, P., & WEST, A. Developing augmented reality capabilities for industry 4. 0 small enterprises: Lessons learnt from a content authoring case study. COMPUTERS IN INDUSTRY, v. 117, p. 103-208, 2020. DOI: https://doi.org/10.1016/j.compind.2020.103208
MACKENZIE, H. The Smart Factory of the Future. p. 1–4, 2016.
MERENDA, C., KIM, H., TANOUS, K., GABBARD, J. L., FEICHTL, B., MISU, T., & SUGA, C. Aug¬mented Reality Interface Design Approaches for Goal-directed and Stimulus-driven Driving Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, v. 24(11), p. 2875–2885, 2018. DOI: https://doi.org/10.1109/TVCG.2018.2868531
MIFSUD, J. Usability Metrics – A Guide to Quantify the Usability of Any System. USABI¬LITY GEEK, 2020. (https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system¬-usability/)
MILGRAM, P., & KISHINO, F. A Taxonomy of Mixed Reality Visual Displays. v. 12, p. 1–15, 1994.
MOURTZIS, D., ZOGOPOULOS, V., KATAGIS, I., & LAGIOS, P. Augmented Reality based Visu¬alization of CAM Instructions towards Industry 4.0 paradigm: A CNC Bending Machine case study. PROCEDIA CIRP, v. 70, p. 368–373, 2018. DOI: https://doi.org/10.1016/j.procir.2018.02.045
PALMARINI, R., AHMET, J., ROY, R., & TORABMOSTAEDI, H. A systematic review of aug¬mented reality applications in maintenance. v. 49, p. 215–228, 2018. DOI: https://doi.org/10.1016/j.rcim.2017.06.002
PATTI, E., MOLLAME, A., ERBA, D., DALMASSO, D., OSELLO, A., MACII, E., & ACQUAVIVA, A. Information Modeling for Virtual and Augmented Reality. IT PROFESSIONAL, v. 19(3), p. 52–60, 2017. DOI: https://doi.org/10.1109/MITP.2017.43
QUANDT, M., KNOKE, B., GORLDT, C., FREITAG, M., & THOBEN, K.-D. General Requirements for Industrial Augmented Reality Applications. PROCEDIA CIRP, v. 72, p. 1130–1135, 2018. DOI: https://doi.org/10.1016/j.procir.2018.03.061
RE, G. M. Low Cost Augmented Reality for Industrial Problem. POLITECNICO DI MILANO, 2013.
SCHWAB, K. The fourth industrial revolution. CURRENCY, 2017.
SEO, D. W., KIM, H., KIM, J. S., LEE, J. Y., ZHANG, X., HAN, Y., HAO, D., LV, Z., BRANCATI, N., CAGGIANESE, G., FRUCCI, M., GALLO, L., NERONI, P., CHOI, H.-S., KIM, S. K. S.-H., LOUP-ES¬CANDE, E., FRENOY, R., POPLIMONT, G., THOUVENIN, I., … CHENG, K. T. Novel individu¬al location recommendation with mobile based on augmented reality. COMPUTERS & GRAPHICS-UK, v. 76(2), p. 42–49, 2016.
SURYANTO, A., KUSUMAWATI, D. A., & SANHOURY, I. M. H. Development of Augmented Reality Technology Based Learning Media of Lathe Machines. JOURNAL PENDIDIKAN TEKNOLOGI DAN KEJURUAN, v. 24(1), p. 32–38, 2018. DOI: https://doi.org/10.21831/jptk.v24i1.18245
ZHANG, XIAOCHEN, ZHANG, H., ZHANG, L., ZHU, Y., & HU, F. Double-Diamond Model-Ba¬sed Orientation Guidance. SENSORS, v. 19(4670), 2019. DOI: https://doi.org/10.3390/s19214670